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       Abstract
 Numerous studies indicate that reactive oxygen species (ROS) are not merely cellular by-products of respiration, but are 
able to modulate various signalling pathways and play certain physiological roles. Recent studies have revealed the impor-
tance of translating ROS-generation to activation/suppression of specifi c signalling pathways. The Wnt signalling pathway, 
which is essential for early development and stem cell maintenance, is also regulated by ROS. A thioredoxin-related pro-
tein,  nucleoredoxin (NRX), governs ROS-stimulated Wnt signalling in a temporal manner. NRX usually interacts with 
 Dishevelled (Dvl), an essential adaptor protein for Wnt signalling, and blocks the activation of the Wnt pathway. Oxidative 
stress causes dissociation of NRX from Dvl, which enables Dvl to activate the downstream Wnt signalling pathway. This 
study also presents the latest research fi ndings on NRX and its related molecules  

  Keywords:   Wnt ,  nucleoreodoxin (NRX) ,  thioredoxin (TRX)     
Overview of the Wnt signalling pathways 

 The Wnt signalling pathway is highly conserved 
throughout evolution. It is essential for early devel-
opment. In many organisms, it has been shown that 
abrogation of the Wnt signalling pathway results in 
embryonic malformation. 

 There are two major pathways elicited by Wnt 
ligands, the Wnt/b-catenin signalling pathway and 
the Wnt/planar cell polarity (PCP) pathway. Research 
into the Wnt/b -catenin signalling pathway was fi rst 
initiated by Sharma [1]. He isolated a  Drosophila  
mutant called ‘ wingless ’, i.e. a fl y with no wings. 
Further genetical and biochemical analyses in  droso-
phila  and in mammalian cell cultures established 
the existence of a signalling pathway triggered by 
Wnt ligands. Meanwhile, Nusse et al. [2] identifi ed 
a new gene ‘ Int-1 ’ that was ectopically activated by 
the proviral insertion of the mouse mammary tumour 
virus (MMTV), which causes mammary tumours in 
mice. Three years later, Rijsewijk et al. [3] discovered 
 Int-1  to be a mammalian homologue of  Drosophila  
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   Correspondence: Yosuke Funato and Hiroaki Miki, Laboratory of Int
3-2 Yamadaoka, Suita, Osaka 565-0871, JAPAN. Fax: +81-6-6879-
osaka-u.ac.jp (HM) 
 wingless . The name ‘Wnt’ is, thus, derived from  wing-
less  and  Int-1 . 

 As described above, the Wnt/ b -catenin signalling 
pathway is deeply involved in cancers. Adenomatous 
polyposis coli (APC), an important suppressor of the 
Wnt/ b -catenin signalling pathway, is encoded by the 
gene responsible for familial adenomatous polyposis 
(FAP). FAP results in the formation of numerous 
 polyps, some of which develop into colorectal tumours 
[4]. Mutations in several components of the Wnt/ 
b -catenin signalling pathway (b -catenin ,  Axin1/2  and 
 TCF4 ) have been also found in cancers [5]. In addi-
tion, gene amplifi cation of  Dvl  [6] and epigenetic silenc-
ing of sFRP, a suppressor of Wnt/ b -catenin  signalling 
outside the cell, are found in various tumours [7]. 

 The Wnt/ b -catenin signalling pathway is also 
known to be important for stem cell maintenance 
[8]. It was reported that both Wnt3a-conditioned 
media and BIO, an inhibitor for glycogen synthase 
kinase 3 b (GSK3 b ),  which activates Wnt/ b -catenin 
signalling, are suffi cient for maintaining self-renewal 
forma Healthcare, Taylor & Francis AS)
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and pluripotent capabilities of embryonic stem (ES) 
cells [9]. Besides ES cells, it has been reported that 
Wnt/ b -catenin signalling is important for maintenance 
of many other stem cell types including hematopoietic 
and mesenchymal stem cells [10,11]. 

 Current understanding of the Wnt/ b -catenin sig-
nalling is summarized in Figure 1. When the Wnt 
ligand is absent,  b -catenin is effi ciently phosphory-
lated by a serine/threonine kinase, GSK3  b,  a process 
facilitated by Axin and APC (therefore, APC/Axin/
GSK3 b  is sometimes called ‘b-catenin destruction 
complex’). Phosphorylated  b -catenin is targeted for 
ubiquitination via  b -TrCP and is rapidly degraded. 
In this way, cytosolic  b -catenin is maintained at a low 
level. When Wnt ligand binds to its receptor, Frizzled 
(Fzd), the phosphorylation of  b -catenin by APC/Axin/ 
GSK3  b  complex is suppressed. Dvl serves as an 
adaptor protein that links Fzd to APC/Axin/GSK3  b  
complex. Upon Wnt stimulation, Dvl is recruited 
to the plasma membrane via Fzd and co-receptor, 
LRP5/6. Several recent reports showed that Dvl poly-
merizes and recruits Axin, leading to the suppression of 
the APC/Axin/GSK3  b  complex [12,13]. This allows  
b -catenin to escape from degradation and accumu-
late in the cytosol, from where it translocates into the 
nucleus. Nuclear  b -catenin binds to a transcription 
factor, TCF/LEF, and controls numerous target genes, 
including  c-Myc ,  CyclinD1  and  Axin2  [14–16]. 

 The other major Wnt-dependent pathway, the Wnt/
planar cell polarity (PCP) pathway, governs multiple 
phenomena, such as orientation of hairs and bristles 
in  Drosophila , neuronal polarity in mammalian neurons 
Fzd

Dvl

Axin

APC GSK3β β-catenin

P

Degradation via

 ubiquitin/proteasome pathway

A -Wnt (stable state)

LRP5/6
and gastrulation movements in vertebrates [17–20]. The 
Wnt/PCP pathway was also fi rst discovered in  Droso-
phila  studies. Vinson and Adler [21] found a mutant 
fl y with misoriented cuticle hairs and bristles, which 
they named ‘ frizzled ’. The mutant protein (which is 
called by the same name) was later identifi ed as a Wnt 
receptor and a component of both the Wnt/ b -catenin 
pathway and the Wnt/PCP pathway [22]. Like the 
Wnt/b -catenin pathway, the existence of the Wnt/PCP 
pathway was also established through identifi cation of 
various genes that are genetically associated with  friz-
zled  in  Drosophila.  Notably, Wnt, Fzd and Dvl are com-
mon components in both the Wnt/ b -catenin pathway 
and the Wnt/PCP pathway, while other factors such 
as Van Gogh/Strabismus (Vang/Stbm), Rho and c-Jun 
are only involved in the Wnt/PCP pathway [23–27]. 
Therefore, Dvl has been described as a branch point 
of these two pathways [26,28,29]. 

  Dishevelled  was also fi rst identifi ed in  Drosophila  in 
1987 [30]. The mammalian counterpart is called  Dvl  
and there are three  Dvl  isoforms ( Dvl1-3 ) [31–33]. 
All Dvl proteins have three conserved domains: the 
NH 2 -terminal DIX (Dvl/Axin) domain [34], the cen-
tral basic-PDZ (PDZ stands for  P ost-synaptic den-
sity-95 (PSD-95),  D iscs large (Dlg),  Z ona occludens 
(ZO1)) domain [35] and the COOH-terminal DEP 
(Dvl, EGL-10, pleckstrin) domain [36]. These three 
domains bind to different proteins and are required 
for Dvl function. It is shown that the DIX and the 
basic-PDZ domains are important for the activation 
of the Wnt/ b -catenin pathway and the basic-PDZ and 
the DEP domains are necessary for the Wnt/PCP 
Wnt

Fzd

Dvl

APC GSK3β

β-catenin

β-catenin

β-catenin

TCF/LEF

B

Target genes

 (c-Myc,Cyclin D1 etc...)

+Wnt (active state)

LRP5/6

Axin
  Figure 1.     Model of Wnt/ b -catenin signal transduction. (A) At the resting state (without Wnt ligand),  b -catenin is effi ciently phosphorylated 
by the  b -catenin destruction complex, composed of APC, Axin and GSK3 b ,  and rapidly degraded via ubiquitin/proteasome pathway. (B) 
Wnt ligand binds to the receptor Frizzled (Fzd) and LRP5/6, which recruits Dvl and Axin to prevent phosphorylation of  b -catenin by the  
b -catenin destruction complex.  b -catenin escapes degradation and accumulates in the cytosol, resulting in the translocation to the nucleus. 
In the nucleus, it binds to the transcription factor, TCF/LEF, to activate the expression of various target genes.  
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pathway, which ensures that Dvl exists at the cross-
road of these two pathways. 

 Knockout mice have been generated for each of the 
three Dvl isoforms. The fi rst characterization of the 
 Dvl1 -knockout mouse was reported in 1997; this 
study reported that these mice develop normally but 
show abnormalities in social behaviour [37]. A direct 
link between these abnormalities and the loss of Dvl1 
has not been demonstrated; however, it is reported 
that hippocampal neurons obtained from  Dvl1 -
knockout mice show defects in dendrite development 
[38]. Approximately half of the  Dvl2 -knockout mice 
died perinatally and these mice showed cardiovascu-
lar abnormalities [39].  Dvl3 -knockout mice also died 
perinatally and had defects similar to those of  Dvl2 -
knockout mice. Expression of a  Dvl3  transgene was 
found to partially rescue this phenotype [40]. The 
phenotypic differences between the three  Dvl  knock-
out mice may be explained by differences in the 
expression patterns of these three molecules. It is 
reported that Dvl1 expression is relatively strong 
in the central nervous system [31], while Dvl2 and 
Dvl3 are expressed more ubiquitously [33,41]. In 
fact, Etheridge et al. [40] demonstrated that  Dvl3-
 knockout mice can also be rescued by expression of 
a  Dvl1  or  Dvl2  transgene. Furthermore,  Dvl1, 2  or 
 Dvl2, 3  double knockout mice show more severe 
phenotypes such as neural tube closure defects, sug-
gesting the functional redundancy of these proteins. 
Taken together, these studies indicate that all three 
Dvl isoforms play fundamental roles during mouse 
development, which highlights the importance of 
eluci dating their mechanism of action.   

 Identifi cation of nucleoredoxin (NRX) as a 
novel interacting partner of Dvl 

 In order to determine the molecular mechanisms 
underlying Dvl function, we planned to perform a com-
prehensive proteomic search for novel Dvl-interacting 
proteins. For this purpose, we fi rst generated an 
NADPH

NADP+ TRX(Ox)

TRX(Red)

2-Cys

2-Cys

TrxR

A      TRX cascade

B      TryX cascade

NADPH

NADP+ trypanothione(Ox)

trypanothione(Red)

TR
NIH3T3 murine fi broblast-derived cell line stably 
expressing FLAG-tagged Dvl1 (FLAG-Dvl1) or GFP 
as a control. We collected cell lysates and performed 
immunoprecipitation with anti-FLAG antibodies. By 
using silver staining, we observed several bands that 
were specifi c to immunoprecipitates of lysate obtained 
from FLAG-Dvl1-expressing cells. The most abun-
dant protein was subjected to mass spectrometry and 
identifi ed as NRX [42]. 

 NRX was fi rst identifi ed by Kurooka et al. [43], as 
a gene adjacent to the  nude  ( Foxn1 ,  Whn  or  Hfh11 ) 
gene locus. They cloned this gene and found that the 
protein product localized to the nucleus when it is 
over-expressed in cultured cells. Therefore, this mol-
ecule was named ‘nucleo’-redoxin, being a nuclear 
member of the thioredoxin (TRX) family. In contrast, 
our results using anti-NRX antibody revealed that 
endogenous NRX mainly exists in the cytosol, sug-
gesting that NRX may shuttle between the cytosol 
and the nucleus. Interestingly, Dvl is also reported to 
exist in both the cytosol and the nucleus [44]. More 
detailed analyses of NRX localization are required. 

 As mentioned, NRX is a member of the thiore-
doxin (TRX) family of proteins. TRX was fi rst iden-
tifi ed as an electron donor for  E. coli  ribonucleotide 
reductase [45]. TRX is highly conserved throughout 
species in both prokaryotes and eukaryotes and is well 
known as a major antioxidant enzyme. TRX and its 
family of proteins possess a typical catalytic motif, 
 Cys -X-X- Cys , and TRX exerts a disulphide bond-
reducing activity. Numerous target proteins of the 
TRX enzymatic activity have been reported, such as 
methionine sulphoxide reductase, NF-κB, Ref-1, 
ribonucleotide reductase and 2-Cys peroxiredoxins 
(PRXs) [46–51]. Among them, 2-Cys PRXs have 
been extensively studied and characterized. 2-Cys 
PRXs directly reduce hydrogen peroxide (H 2 O 2 ), per-
oxynitrite and organic hydroperoxides and protect 
cells from oxidative stress. During this reaction, 2-Cys 
PRXs become oxidized and TRX reduces and reacti-
vates 2-Cys PRXs. TRX is then reduced by thiore-
doxin reductase (TrxR), which mediates an electron 
 PRXs(Ox)

 PRXs(Red)

H2O2

2H2O

TryX(Ox)

TryX(Red)

TryP(Ox)

TryP(Red)

H2O2

2H2O
  Figure 2.     TRX and TryX cascades. (A) 2-Cys PRXs are H 2 O 2 -scavenging enzymes. Oxidized 2-Cys PRXs are reactivated by TRX with 
electrons derived from NADPH through TrxR. (B) In trypanosomes, tryparedoxin peroxidase (TryP) eliminates H 2 O 2 . Oxidized TryP is 
reduced by TryX, with electrons donated by trypanothione. NADPH reduces trypanothione through catalytic activity of trypanothione 
reductase (TR).  
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transfer from NADPH to oxidized TRX. This string 
of reactions is called the TRX cascade and is known 
as one of the schemes to scavenge H 2 O 2  from cells 
(Figure 2). Besides these specifi c targets, TRX also 
reduces irregular protein disulphide bonds caused by 
oxidative stress. 

 To date, there are more than 20 TRX family mem-
bers. Among them, NRX, Rod-derived cone viability 
factor (RdCVF) and Chromosome 9 open reading 
frame 121 (C9orf121, also called RdCVF2) can be 
classifi ed in the same sub-family, based on the relatively 
high similarity in their amino acid sequence [52,53]. 
The TRX domains of these three proteins are slightly 
B

NRX 

1 11 165 176

RdCVF 

1 8 147

C9orf121

1 10 144 156

TRX

1 10211 105

TryX

1 12 142 144

A

different from the conventional TRX domain and 
more closely resemble that of tryparedoxin (TryX), a 
TRX-like protein identifi ed in the parasite, trypanoso-
matid [54] (Figure 3). Trypanosomatids are protozoan 
parasites which cause various serious diseases, such 
as visceral Leishmaniasis, sleeping sickness and the 
Chagas’ disease and kill thousands of people a year 
[55]. While other organisms use mainly TRX and glu-
tathione systems to maintain redox homeostasis, try-
panosomatids do not have such systems. Instead, they 
have a unique redox homeostasis system utilizing try-
panothione, a spermidine-glutathione conjugate only 
found in trypanosomatids (Figure 2). NRX, RdCVF 
TRX domain (TryX-like)

PDI-b'

304 314 426 435

212

TRX domain (conventional)
  Figure 3.     Similarities between TRX, NRX, RdCVF, C9orf121 and TryX proteins. (A) Schematics of the human TRX (NP_003320), NRX 
(NP_071908), RdCVF (NP_612463), C9orf121 (NP_001155097) and TryX of  Trypanosoma brucei  (XP_843968). The amino acid numbers 
of each protein and domain are also shown. (B) The sequences of the conserved regions in the proteins shown in (A) (conventional TRX 
domain for TRX and TryX-like domains for the others) are aligned using clustal W2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html). 
Gap regions that specifi cally exist in TRX are boxed. The conserved catalytic sequences of Cys-X-X-Cys are in grey. The asterisk (∗), 
colon (:), and period (.) denote identical, conserved substitutions and semi-conserved substitutions, respectively.  
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and C9orf121 possess, in common, an uncharacter-
ized domain that is similar to TryX, which is called 
TryX-like domain. RdCVF and C9orf121 contain one 
TryX-like domain, while NRX  possesses two TryX-like 
domains. Of the two  TryX-like domains in NRX, the 
consensus TRX motif of the  NH 2 -terminal  TryX-like 
domain is altered to   Ser -Ala-Pro- Cys . NRX also 
bears a PDI-b’-like domain in its COOH-terminus. 
The PDI-b’ domain is required for substrate recogni-
tion during the catalytic reaction of protein disulphide 
isomerase (PDI) proteins, another sub-group of the 
TRX family, which functions in the ER to facilitate the 
proper folding of proteins [56]. As NRX possesses oxi-
doreductase activity, it is possible that NRX also uti-
lizes its PDI-b’-like domain as a substrate  recognition 
domain in cells. 

 RdCVF (also known as TRX-like 6) was identifi ed 
as a protein which enhances the viability of cone cells 
[57]. RdCVF is implicated in upregulation of NF-κB 
activity [58] and protects tau from oxidative stress 
[59]. Such molecular functions may be important for 
its cellular function as a cone viability factor. C9orf121 
also contains a TryX-like domain and is also reported 
to enhance cone viability like RdCVF [53].   

 NRX suppresses the Wnt/ b -catenin signalling 
pathway in a redox-dependent manner 

 To elucidate the action of NRX against the Wnt/ 
 b -catenin signalling pathway, we performed vari-
ous over-expression experiments in cultured cells. 
We found that (i)  b -catenin accumulation caused 
by Dvl over-expression is suppressed by NRX co-
expression, but not by TRX or a mutant form of 
NRX (in which both cysteine residues in the TRX 
motif are mutated to serine, preventing it from bind-
ing to Dvl), (ii)  b -catenin accumulation caused by 
Wnt3a ligand treatment is prevented in wild-type 
 NRX-over-expressing cells, but not in the cysteine 
mutant NRX-over-expressing cells, (iii) TCF/LEF 
reporter activity upregulated by Dvl over-expression 
is suppressed by NRX co-expression, which cannot, 
however, inhibit upregulation by over-expression of 
constitutively active mutant of  b -catenin [42,52]. 
Taken together, NRX is an inhibitor of Wnt/ b -catenin 
signalling at the level of Dvl and its inhibitory effect 
is exerted via binding to Dvl. We also performed 
 loss-of-function analyses of NRX utilizing RNA inter-
ference (RNAi). By reporter assays and RT-PCR, we 
confi rmed that NRX is a negative regulator of the 
Wnt/ b -catenin pathway. 

 We also discovered that ectopic expression of 
NRX leads to the dephosphorylation of Dvl. Dvl-
phosphorylation reportedly correlates with the 
Wnt/ b -catenin pathway activity [60], supporting our 
above-mentioned results showing that NRX func-
tions as a negative regulator of the Wnt/ b -catenin 
pathway. The mechanism of how NRX down-
regulates the phosphorylation status of Dvl has not 
been identifi ed. It should be noted here that NRX 
also binds to PP2A C , a catalytic sub-unit of protein 
phosphatase 2A (PP2A), and competes with PR55, 
a regulatory sub-unit of PP2A [61]. It may be pos-
sible that Dvl dephosphorylation is mediated by 
PP2A, which is recruited to Dvl via NRX. In fact, it 
has been reported that PP2A plays an inhibitory role 
in Wnt/ b -catenin signalling [62,63]. It is also possi-
ble that NRX regulates PP2A phosphatase activity 
via its oxidoreductase activity. There is a report that 
PP2A C  is inactivated by oxidation and is reactivated 
by reducing agents [64]. 

 As NRX is a TRX family protein and the mutant 
protein of its catalytic cysteine does not bind to Dvl, 
it was hypothesized that the association between 
Dvl and NRX could be redox-dependent. Therefore, 
 in vitro  pull-down experiments were performed with 
GST-tagged Dvl1 and His-tagged NRX proteins 
under reduced and oxidized conditions with dithio-
threitol (DTT) and H 2 O 2 , respectively. The interac-
tion between these two proteins was strengthened in 
the reduced conditions and weakened by H 2 O 2  in a 
dose-dependent manner [42]. We also treated cells 
with H 2 O 2  and performed immunoprecipitation 
experiments on their lysates. As we expected, the 
complex formation between Dvl and NRX is weak-
ened by H 2 O 2  treatment. Therefore, we concluded 
that Dvl and NRX interact in a redox-dependent 
manner. Treatment of Dvl and NRX with DTT or 
H 2 O 2  by itself showed that NRX is responsible for 
this redox-dependent interaction. It is known that 
there is a small but signifi cant change in the protein 
structure when TRX is subjected to oxidizing or 
reducing conditions [65]. Future structural analyses 
of NRX may reveal whether NRX also shows a simi-
lar redox-dependent conformational alteration and 
how it contributes to the redox-dependent interaction 
between NRX and Dvl. 

 The two fi ndings that (a) Dvl and NRX interact in a 
redox-dependent manner and (b) NRX suppresses the 
Wnt/ b -catenin pathway, prompted us to set a hypoth-
esis that the Wnt/ b -catenin pathway may be redox-
regulated through NRX. When we treated cells with 
H 2 O 2 , a signifi cant upregulation of the Wnt/ b -catenin 
pathway, as evidenced by  b -catenin accumulation and 
target gene expression, was observed. This redox-
dependent upregulation of the Wnt/ b -catenin pathway 
did not occur in NRX-RNAi cells, showing that this 
event is mediated through NRX. 

 Apoptosis signal-regulating kinase 1 (Ask1) also 
binds to TRX in a redox-dependent manner and reg-
ulates downstream signalling, leading to apoptosis 
[66,67]. Under normal (reducing) cellular conditions, 
TRX binds to Ask1 and prevents its activation. Oxi-
dative stress converts TRX to its oxidized form which 
dissociates from Ask1. TRX-free Ask1 becomes 
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activated and stimulates the downstream ‘stress signal 
cascade’ via its kinase activity. As NRX is also a TRX 
family protein, the redox-dependent activation of 
Wnt/ b -catenin pathway could be explained by an 
analogous mechanism (Figure 4). 

 What could be the physiological function of redox-
dependent activation of the Wnt/ b -catenin pathway? 
Several groups have reported that Wnt/ b -catenin sig-
nalling is suppressed by chronic oxidative stress (more 
than 12 h of H 2 O 2  treatment) [68–70]. In contrast, 
the above-mentioned H 2 O 2  treatment-dependent 
activation of Wnt/ b -catenin signalling was rather a 
rapid and transient event (5–180 min). Therefore, the 
redox-dependent activation of Wnt/ b -catenin signal-
ling under physiological conditions should also be 
temporally or spatially limited. One possible scenario 
is that acute stimulation of the Wnt/ b -catenin path-
way in response to a mild and short-term oxidative 
stress prevents the unnecessary activation of apop-
totic signalling pathways. In general, when mild stress 
is applied to cells, they tend not to choose apoptosis 
but rather resist/adapt to it. For example, in the case 
of DNA damage, cells choose cell cycle arrest fol-
lowed by DNA repair or activation of the apoptotic 
signalling pathway in a manner dependent on the 
extent of the DNA damage [71]. In fact, activation of 
Wnt/ b -catenin signalling induces the expression of 
various anti-apoptotic genes and protects cells from 
apoptosis [72,73]. 
Ask1

TRX

HS SH

ROS

Ask1

JNK

TRX

S-S

A B

c-Jun

stress MAPK pathway
 Another possibility is that the Wnt/ b -catenin path-
way itself generates ROS as a means of signal propa-
gation. Growth factors are known to induce the 
generation of ROS in cells as intracellular mediators 
for downstream signalling [74]. Furthermore, recent 
reports claim that Rac, a fi rmly established activator 
of NADPH oxidase that generates superoxide in 
phagocytes, is important not only for the Wnt/PCP 
pathway but also for the Wnt/ b -catenin pathway [75]. 
Therefore, Wnt stimulation may also actively generate 
and utilize ROS as either essential or auxiliary factors 
for signal transduction. 

 As noted above, chronic oxidative stress results in 
down-regulation of the Wnt/ b -catenin pathway. This 
is thought to be due to the redox-dependent interac-
tion between  b -catenin and FOXO, a transcription 
factor, the activation of which induces the transcrip-
tion of various anti-oxidant genes [68,69,76]. When 
FOXO binds to  b -catenin, it competitively inhibits 
TCF/LEF binding to  b -catenin, which may explain 
the observed down-regulation of Wnt/b -catenin sig-
nalling under conditions of chronic oxidative stress. 
In this process, it has been shown that b -catenin is an 
essential cofactor for the function of FOXO as a tran-
scription factor [76]. Thus, accumulation of  b -catenin 
following dissociation from NRX in response to 
H 2 O 2  treatment might function to upregulate FOXO 
transcriptional activity when cells are challenged by 
chronic oxidative stress (Figure 4).   
Dvl

NRX

HS SH

ROS

Dvl

β-catenin

NRX

S-S

TCF/LEF FOXO

Wnt/β-catenin pathway
  Figure 4.     Redox-dependent modulation of stress kinase pathway and Wnt/ b -catenin pathway. (A) Stimulation of cells with ROS induces 
oxidation of TRX either directly or through 2-Cys PRXs and formation of intramolecular disulphide bond. Oxidized form of TRX 
dissociates from Ask1, which results in the activation of Ask1 and the downstream stress mitogen-activated protein kinase (MAPK) pathway. 
(B) ROS also induces dissociation of NRX from Dvl, which results in the accumulation of  b -catenin.  b -catenin may associate either with 
TCF/LEF (transient stress) or FOXO (chronic stress) to activate the expression of various target genes.  
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 NRX is an essential component in early 
development 

 To understand the role of NRX at the level of the 
organism, we performed experiments with the African 
clawed frog,  Xenopus laevis . It has been shown that 
ectopic activation of Wnt/ b -catenin signalling in the 
ventral marginal zone (VMZ) of embryos results in 
duplicate axis formation [77]. When we performed 
co-injection experiments with  Dvl  and  NRX  mRNAs, 
we found that duplicate axis formation induced by 
 Dvl  mRNA injection was clearly suppressed by  NRX  
mRNA injection [42]. In  Xenopus , Wnt/ b -catenin 
signalling is also essential for anterior-posterior 
(AP) axis formation [78,79]. Downregulation of the 
 Xenopus  NRX homologue (MGC84045) by injecting 
morpholino antisense oligonucleotide (MO) resulted 
in aberrant head formation, which was rescued by 
coinjecting mRNA of NRX or other negative regula-
tors of Wnt/ b -catenin signalling (GSK3  b  or a domi-
nant negative form of TCF). We also confi rmed that 
embryos injected with NRX MO showed an increase 
in the Wnt/ b -catenin signalling activity and the expres-
sion of anterior marker  Bf-1  was considerably reduced. 
Collectively, these data clearly indicate that NRX 
functions as a negative regulator of Wnt/ b -catenin sig-
nalling, not only in culture cells but also in  Xenopus  
embryos. 

 To investigate the role of NRX in the Wnt/PCP 
pathway, another major Wnt-induced pathway, we 
injected  NRX  mRNA or MO into the dorsoanimal 
region of fertilized  Xenopus  eggs. We found both these 
embryos to display a bent-axis phenotype, typically 
observed in embryos with abnormal Wnt/PCP path-
way activity [80]. Thus, NRX appears also to be 
important for the Wnt/PCP pathway. When we co-
injected  Dvl  mRNA and  NRX  mRNA, we found that 
the bent-axis phenotype caused by  Dvl  mRNA was 
partially cancelled by  NRX  mRNA, suggesting that 
NRX affects the Wnt/PCP pathway by inhibiting Dvl 
function. The bent-axis phenotype of  Xenopus  embryos 
induced by perturbation of the Wnt/PCP pathway is 
a result of a convergent extension defect. By using 
Alexa© fl uorescent dyes and animal cap assays to 
directly observe extension movement, we confi rmed 
that embryos injected with  NRX  mRNA or  NRX  MO 
have defects in convergent extension. Activation of 
the Wnt/PCP pathway in mammalian cultured cells 
results in elevated phosphorylation of c-Jun. Indeed, 
c-Jun phosphorylation elevated by Dvl-expression is 
suppressed by NRX co-expression. In contrast, NRX 
cannot suppress c-Jun phosphorylation stimulated by 
the dominant active form of Rac1, Rac1G12V, which 
functions downstream of Dvl. These data suggest an 
evolutionarily conserved role of NRX in the regula-
tion of the Wnt/PCP pathway through Dvl. 

 It was recently reported that in zebrafi sh H 2 O 2  is 
generated at the wound and functions as a signal for 
the recruitment of leukocytes  in vivo  [81]. In general, 
such migratory behaviour is confi ned to specifi c types 
of cells, such as leukocytes, in adult animals, but a 
variety of cells dramatically migrate in developmental 
stages (e.g. neural crest cells) to cause morphogene-
sis. Therefore, ROS might also contribute to the 
migration of these cells in a fashion similar to the case 
of the zebrafi sh leukocytes. In such situations, NRX 
would be oxidized, resulting in the activation of Rac/
Rho via the Wnt/PCP pathway, which drives cell 
migration. Indeed, it is reported that migration of cul-
ture cells during wound healing is upregulated by Wnt 
stimulation and Dvl and Rho, but not  b -catenin, play 
important roles in this process [82]. 

 Mice carrying mutations in the  NRX  gene were 
very recently generated and described. The group led 
by Justice generated various mutant mice by ENU-
based random mutagenesis and found one mouse 
strain to be a hypomorphic mutant of  NRX  [83]. 
These  NRX  mutant mice died perinatally, as did the 
 Dvl2  or  Dvl3  knockout mice. The  NRX  mutant mice 
showed craniofacial defects, which may have caused 
their death by resulting in an inability to suckle. 
Knock-out mice harbouring gene deletions of com-
ponents of the Wnt/ b -catenin pathway (such as  
b  -catenin  (Wnt1-Cre-mediated) and  Axin2 ) com-
monly display craniofacial defects [84,85]. In addi-
tion, we independently generated  NRX  mutant mice 
by a conventional gene targeting approach via homol-
ogous recombination. The above-mentioned cranio-
facial defects reported by Justice’s group are all also 
observed in our  NRX  mutant mice. The fact that two 
 NRX  mutant mice strains, which were independently 
generated by different methods, show a very similar 
phenotype clearly indicates an indispensable role for 
NRX in normal murine development. 

 There are several NRX-related proteins in  C. elegans . 
Three independent groups reported that the deple-
tion of one of them, R05H5.3, via RNAi causes an 
embryonic lethal phenotype [86–88]. It should be 
noted that all NRX-related proteins in  C. elegans , 
including R05H5.3, contain only one TryX-like 
domain and therefore more closely resemble TryX 
than NRX.   

 Future perspectives 

 Since the discovery of NRX as a physiological binding 
partner of Dvl, our understanding of this fascinating 
molecule at the molecular level has advanced substan-
tially. In addition, analyses of the  NRX  mutant mice 
and  Xenopus  embryos have also revealed the essential 
function of NRX in multiple developmental stages. 
However, there still remain many unanswered ques-
tions. For example, what is the physiological relevance 
of H 2 O 2 -dependent activation of the Wnt/ b -catenin 
pathway? Whilst we have speculated on several 
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possibilities in the previous section (e.g. that it may 
prevent unnecessary activation of apoptotic pathways 
or that it may be required for Wnt/ b -catenin signal-
ling itself), the answer remains to be experimentally 
 determined. 

 Another unresolved issue is that of NRX involve-
ment in tumourigenesis. It is well known that aberrant 
activation of the Wnt/ b -catenin pathway leads to 
tumourigenesis and several genetic alterations were 
found in various components of the Wnt/ b -catenin 
pathway. We showed that NRX-knockdown in culture 
cells results in an elevated growth rate and increases 
transformation potential in the presence of activated 
Ras or MEK [42]. So far, genetic alterations in the 
 NRX  locus have not been reported to occur in tumours. 
However, as mentioned in the previous section, some 
Wnt/ b -catenin pathway components are epigenetically 
silenced in tumours. Also, it is known that tumour 
cells tend to have a higher level of ROS compared to 
normal cells [89]. While  NRX - / - mice die perinatally, 
 NRX � / - mice are apparently normal and fertile. How-
ever, modest but signifi cant craniofacial abnormali-
ties, which both we and Boles et al. [83] identifi ed in 
 NRX - / - mice, can still be observed in�/- littermates. 
Therefore, it will be of interest to observe these mice 
for a much longer period to determine whether  NRX � / - 
mice display a high incidence of tumours.        

Declaration of interest: The authors report no con-
fl icts of interest. The authors alone are respon sible for 
the content and writing of the paper.
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